Задача 012

Существует ли такая компания из 125 человек, в которой каждый человек имеет ровно 50 знакомых и любые двое людей имеют общего знакомого тогда и только тогда, когда они сами незнакомы?

Подсказка

Разбейте 125 человек на 5 групп.

Решение

Ответ. Существует.
Решение: Разобьём 125 человек на 5 групп по 25 человек, расставим группы по кругу, и пусть каждый дружит со всеми пятьюдесятью из двух соседних групп. Легко проверить, что все условия задачи при этом выполнены.

Задача 028

В стране 300 городов. Некоторые пары городов соединены дорогами. Оказалось, что из каждого города выходит ровно 10 дорог. Страна распалась на две республики Иксия и Игрекия. В Иксии оказалось 200 городов, а в Игрекии — 100 городов. Оказалось, что число дорог, соединяющих города Иксии, равно x, а дорог, соединяющих города Игрекии, равно y. Чему может быть равно x-y ?

Подсказка

Пусть из Иксии в Игрекию ведёт z дорог. Сколько ещё дорог в республиках?

Решение

Ответ. 500. Решение. Пусть из Иксии в Игрекию ведёт z дорог. Тогда из городов Иксии в совокупности выходит 10 \cdot 200=2 x+z дорог, а из городов Игрекии — 10 \cdot 100=2 y+z дорог ( x и y умножаются на 2 , так как каждая дорога, соединяющая города одной республики, считается тут дважды). Вычитая два полученных равенства и деля результат пополам, получаем ответ.

Задача 035

10 команд играют турнир. В некоторый момент оказалось, что любые две команды сыграли между собой не более, чем по одному разу, только «»Металлург»» и «»Локомотив»» сыграли дважды. При этом каждая команда сыграла хотя бы один матч. Могло ли так случиться, что в этот момент все команды сыграли различное число игр?

Подсказка

Допустим, есть команда, не сыгравшая ни одного матча. Тогда каждая из оставшихся команд сыграла не больше 9 матчей: с каждой из остальных восьми плюс один повторный.

Решение

Ответ: Нет. Решение. Допустим, есть команда, не сыгравшая ни одного матча. Тогда каждая из оставшихся команд сыграла не больше 9 матчей: с каждой из остальных восьми плюс один повторный. Получается 9 возможностей (1,2, \ldots, 9 матчей) на 19 команд. Но тогда эти команды вместе сыграли (1+2+\ldots+9) / 2=22,5 матчей, что невозможно.

Теперь допустим, что каждая команда сыграла хотя бы один матч. Тогда для числа сыгранных матчей получается 10 возможностей (1,2, \ldots, 10 матчей) на 10 команд. Но тогда эти команды вместе сыграли (1+2+\ldots+10) / 2=27,5 матчей, что также невозможно.

Задача 053

В стране из 1000 городов некоторые города соединены дорогами, по которым можно двигаться в обе стороны. Известно, что в этой стране нет циклического маршрута. При каком наибольшем k всегда можно выбрать k городов так, чтобы каждый выбранный город был соединен не более чем с двумя из остальных выбранных?

Подсказка

Назовем пауком город, соединенный ровно с тремя другими, попарно не соединенными дорогами. Рассмотрим 250 пауков (всего 1000 городов). Если k \geqslant 751, то в одном из пауков выбраны все 4 города, что противоречит условию.

Решение

Ответ. k=750. Решение. Пример. Назовем пауком город, соединенный ровно с тремя другими, попарно не соединенными дорогами. Рассмотрим 250 пауков (всего 1000 городов). Если k \geqslant 751, то в одном из пауков выбраны все 4 города, что противоречит условию.

Оценка. Рассмотрим граф: вершины — города, рёбра — дороги. Если граф не связный, будем проводить по ребру между компонентами связности, пока он не станет связным. Ясно, что такая процедура не увеличит искомое число k и не добавит в граф циклы.

Итак, мы можем считать, что рассматриваемый граф — дерево. Индукцией по n докажем, что в дереве на n вершинах можно выбрать k \geqslant 3 n / 4 вершин так, чтобы выполнялось условие задачи. Такое множество вершин будем называть хорошим.

База: n=1,2,3,4 очевидна.
Переход: от всех меньших n к n. Подвесим дерево за вершину и рассмотрим вершину v самого нижнего уровня. Если у ее предка u не менее трёх потомков, то выкинем u и всех ее потомков.

В оставшемся дереве выберем хорошее множество и добавим всех потомков u. Полученное множество будет хорошим для исходного дерева, и в нём не менее \frac{3}{4}(n-4)+3 вершины.

Если у вершины u ровно 2 потомка v и w, то рассмотрим её предка t. Выкинем вершины u, v, w и t и, если понадобится, добавим рёбра для того, чтобы получилось дерево. В получившемся дереве выберем хорошее множество из не менее \frac{3}{4}(n-4) вершин, после чего добавим к нему вершины u, v и w.

Итак, мы можем считать, что у любой вершины с нижнего уровня предок имеет степень ровно 2. Пусть v — вершина нижнего уровня, u — её предок, w — предок u. У всех потомков (не обязательно прямых) w степень 1 или 2 . Если у w всего k \geqslant 3 потомков (не обязательно прямых). Выкинем w и всех её (не обязательно прямых) потомков. В оставшемся графе хорошее множество содержит не менее 3(n-k-1) / 4 вершин. Добавим к ним всех k потомков w. Получим хорошее множество из не менее 3(n-k-1) / 4+k \geqslant 3 n / 4 вершин в исходном дереве.

Наконец, если k \leqslant 2, то единственные потомки w — это u и v. Пусть t — предок w. Выкинем вершины u, v, w и t. В получившемся графе выберем хорошее множество из не менее \frac{3}{4}(n-4) вершин, после чего добавим к нему вершины u, v и w.

Задача 058

В компании n человек. У каждого из них не менее 2021 знакомого. При этом нет пятерых людей, попарно знакомых друг с другом. При каком наименьшем n такое возможно?

Подсказка

Ответ. 2695. Решение. Покажем, как могло оказаться 2695 человек. Разобьём их на 4 группы размером 674,674,674 и 673 . Сделаем людей внутри одной группы незнакомыми, а в разных — знакомыми.

Решение

Ответ. 2695. Решение. Покажем, как могло оказаться 2695 человек. Разобьём их на 4 группы размером 674,674,674 и 673 . Сделаем людей внутри одной группы незнакомыми, а в разных — знакомыми. Тогда у каждого человека знакомых минимум 673+674+674=2021, а пяти попарно знакомых точно нет.
Докажем, что менее 2695 человек быть не могло. Предположим, что у нас 2694-x людей. Тогда у каждого не более 672-x незнакомых. Будем набирать группу из попарно знакомых. Когда мы добавляем к ней любого человека, он запретит с учётом себя не более 673-x. Поскольку 4(673-x)=2692-4 x<2694-x, то после того как наберём не более четверых, не запрещённые останутся, поэтому можно будет добавить человека в нашу группу. Получается, найдётся группа из 5 попарно знакомых.

Задача 061

Дано нечетное число k>1 и натуральное n>k . B компании из n школьников среди любых k школьников найдется школьник, знакомый с остальными k-1 школьниками. Найдите все значения n и k, при которых можно утверждать, что в такой компании всегда найдется школьник, знакомый со всеми. Знакомства взаимные.

Подсказка

Пусть n четно. Покажем, что можно познакомить между собой n школьников так, что никакой школьник не будет знаком со всеми остальными, но среди любых k из них найдется школьник, знающий оставшихся k-1 школьников. Разобьем школьников на пары и познакомим их так, чтобы школьники из одной пары были незнакомы между собой, а из разных пар — знакомы.

Решение

Тогда и только тогда, когда n нечетно. Решение. Пусть n четно. Покажем, что можно познакомить между собой n школьников так, что никакой школьник не будет знаком со всеми остальными, но среди любых k из них найдется школьник, знающий оставшихся k-1 школьников. Разобьем школьников на пары и познакомим их так, чтобы школьники из одной пары были незнакомы между собой, а из разных пар — знакомы. Выберем любых k школьников. Поскольку компанию из нечетного числа школьников нельзя разбить на пары, среди них найдется такой, у которого незнакомый ему школьник в эту группу из k человек не вошел. Поэтому этот школьник знает всех остальных k-1 школьников. Таким образом, при четном n искомый способ знакомства существует.

Пусть n нечетно. Достаточно показать, что если нет школьника, который знает всех, то условие задачи не выполнено. В компании найдется школьник Вася, которому незнакомы хотя бы два других школьника (иначе компания должна разбиться на пары незнакомых школьников, что при нечетном n невозможно). Покажем, что в этой компании не будет выполнено условие о группе из k школьников. Будем набирать эту группу постепенно. Сначала поместим в нее Васю и каких-то двух незнакомых ему школьников. На каждом шаге будем добавлять в группу двух еще не добавленных в нее незнакомых друг с другом школьников. Поскольку в каждый момент времени количество школьников в группе будет нечетным, то либо на какомто шаге в группе окажется ровно k школьников (и тогда по построению у каждого в группе будет незнакомый ему школьник из группы), либо в какой-то момент окажется, что среди оставшихся школьников все попарно знакомы. Во втором случае у любого оставшегося школьника есть незнакомый ему школьник из группы. Поэтому, если мы доберем группу до k школьников как угодно, то у любого школьника в группе снова будет незнакомый школьник среди остальных школьников группы. Итак, снова найдена группа из k школьников, среди которых нет такого, который знает всех остальных из группы.

Задача 068

В комнате находятся 99 человек. Каждую минуту из комнаты выходит человек, у которого количество знакомых среди присутствующих хотя бы на 2 больше, чем у каждого из остальных. Через несколько минут такого человека не нашлось. Какое минимальное количество людей могло остаться к этому моменту в комнате? (Знакомства взаимные.)

Подсказка

Выкидывание вершины с рёбрами не увеличивает степени остальных, потому степень каждого следующего выходящего (на момент выхода) хотя бы на 2 меньше предыдущей.

Решение

Ответ. 51 человек.

Решение: Оценка. Рассмотрим граф с 99 вершинами, рёбра соответствуют знакомствам. Выкидывание вершины с рёбрами не увеличивает степени остальных, потому степень каждого следующего выходящего (на момент выхода) хотя бы на 2 меньше предыдущей. Поэтому их степени не больше 98,96, \ldots 4,2 соответственно. Но удалить вершину степени 2 невозможно, так как есть ещё ненулевые степени, а вершины степени 1 и 0 не подходят по условию. Таким образом, из комнаты выйдет не более 48 человек.

Пример. Пусть человек с номером 1 \leqslant k \leqslant 48 знаком с людьми с номерами от 2 k+1 до 99, других знакомств нет. Уходить они будут по порядку от 1 до 48 . На момент ухода k-го человека: ему не знакомы только k следующих за ним, остальным из этих 48 — хотя бы k+1 следующих и предыдущий, а последним 51 — хотя бы 50 , что тоже не меньше k+2.