Задача 073

В дереве T 80 вершин. Набор из 39 независимых ребер (не имеющих общих вершин) будем называть толстым паросочетанием. Известно, что дерево T имеет 820 различных толстых паросочетаний. Докажите, что T — путь.

Подсказка

Будем доказывать индукцией по n, что дерево на 2 n вершинах имеет не более C_{n+1}^{2} (толстых) паросочетаний с n-1 независимыми рёбрами. Как выглядит дерево, если n \geqslant 3 и толстых паросочетаний ровно C_{n+1}^{2}? А при n=2?

Решение

Решение. Будем доказывать индукцией по n, что дерево на 2 n вершинах имеет не более C_{n+1}^{2} (толстых) паросочетаний с n-1 независимыми рёбрами. Причём если n \geqslant 3 и толстых паросочетаний ровно C_{n+1}^{2}, то дерево является путем. А при n=2 граф является или путем, или «графом-ёжиком».

При n=2 существуют только такие деревья. Докажем переход. Пусть T — дерево на 2 n вершинах, n \geqslant 3. Так как дерево — это двудольный граф, его вершины можно разбить на две доли V_{1} и V_{2}. Заметим, что любое толстое паросочетание содержит по n-1 вершин из долей V_{1} и V_{2}. Следовательно, раз уж толстые паросочетния вообще существуют, возможны три случая, два из которых симметричны.
1. \left|V_{1}\right|=n+1,\left|V_{2}\right|=n-1 или \left|V_{1}\right|=n-1,\left|V_{2}\right|=n+1. Разберём первый случай, второй доказывается аналогично. Заметим, что в любом толстом паросочетании не участвуют 2 вершины из доли V_{1}. Количество способов выбрать две вершины из V_{1} равно C_{n+1}^{2}. Значит, толстых паросочетаний не более C_{n+1}^{2}. Предположим, что их ровно C_{n+1}^{2}. Тогда для любых двух вершин u, v \in V_{1} существует толстое паросочетание, не содержащее вершины u и v. Но такого не может быть. Действительно, количество рёбер в дереве равно 2 n-1, а \left|V_{2}\right|=n-1. Так как n \geqslant 3, в доле V_{2} есть вершина x степени не более 2. Тогда без вершин из V_{1}, среди которых есть все соседи x, толстое паросочетания построить невозможно, противоречие.
2. \left|V_{1}\right|=n,\left|V_{2}\right|=n. Подвесим граф за вершину. Пусть v — висячая вершина последнего уровня, а u — её сосед на предыдущем уровне. Без ограничения общности будем считать, что v \in V_{1}. Если у вершины u есть ещё одна соседняя висячая вершина w, то любое толстое паросочетание не содержит одну из вершин w или v, и одну из вершин V_{2}. Тогда толстых паросочетаний не больше 2 n<C_{n+1}^{2} при n \geqslant 3.

Пусть у вершины u нет соседних висячих вершин, кроме v. Разобьём толстые паросочетания T на два типа, первый тип — не содержащие v, второй тип — содержащие ребро u v. Паросочетаний первого типа не более n, так как они не содержат v и одну из вершин V_{2}, коих n. Все паросочетания второго типа образуют толстое паросочетание дерева T^{\prime}=T-u-v, причём в T^{\prime} поровну вершин в долях. По предположению индукции в дереве T^{\prime} не более C_{n}^{2} толстых паросочетаний. Значит, в T не более C_{n}^{2}+n=C_{n+1}^{2} толстых паросочетаний. Более того, если в дереве T ровно C_{n+1}^{2} толстых паросочетаний, то паросочетаний первого типа ровно n, второго — ровно C_{n}^{2}, а дерево T^{\prime} — это путь a_{1} a_{2} \ldots a_{2 n-2}. Если сосед u — это a_{1} или a_{2 n-2}, то T — путь. Иначе из соображения чётности одна из вершин a_{2} и a_{2 n-3} лежит в доле V_{2} дерева T (пусть a_{2} ). Но тогда при удалении вершин v и a_{2} дерево не имеет паросочетания. Следовательно, паросочетаний первого типа меньше n, противоречие. Индукционный переход доказан.