Задача 069

В стране 100 городов. Некоторые из них соединены дорогами, причем между любыми двумя городами есть не более одной дороги. Города пронумерованы числами от 1 до 100. Петя совершил 100 путешествий по дорогам страны, каждый раз начиная путешествия в разных городах. Все свои путешествия он осуществляет по следующему правилу. Оказавшись в каком-либо городе A, Петя находит среди всех городов, соединенных с A, город B с наименьшим номером. Если город B уже был посещен в этом путешествии, или из A вообще нет ни одной дороги, путешествие тут же заканчивается в A. B противном случае, Петя перемещается из A в B и продолжает путешествие по этому же правилу. Оказалось, что совершив 100 путешествий, Петя посетил все города страны поровну раз. При каком наибольшем количестве дорог в стране такое возможно?

Подсказка

Рассмотрим город номер 100. Он может быть посещен в двух случаях: 1) мы начали путешествие с него; 2) мы начали путешествие с города i<100 и город i соединен только с городом 100.

Решение

Ответ: 2500.

Решение. Оценка. Рассмотрим город номер 100. Он может быть посещен в двух случаях: 1) мы начали путешествие с него; 2) мы начали путешествие с города i<100 и город i соединен только с городом 100. Предположим, что все города были посещены хотя бы три раза. Тогда есть хотя бы два города, которые соединены только с городом 100 . Но наибольший из таких городов может быть посещен только один раз (когда путешествие начинается в нем). Если все города посещены 1 раз, то в стране вообще нет дорог, что нас не устраивает. Значит, все города посещены ровно два раза. Удалим город 100 и город i, соединенный только с ним. Мы удалили не более 98+1 дорог. Для оставшейся части страны всё ещё верно утверждение, что при путешествиях с началом в каждом из городов, все города посещаются поровну раз, так как города i и 100 посещались ровно 2 раза в путешествиях с началом i и 100. Повторяя такие рассуждения, мы будем удалять пары городов, удаляя не более 97,95, \ldots, 1 дорог. Значит, изначально в стране было не более 1+3+\ldots+99= 2500 дорог. Пример: при i \leqslant 50 город i соединим с городами с номерами хотя бы 101-i. Также соединим попарно города с номерами, большими 50. Тогда начиная в городе i мы перемещаемся в город 101-i и останавливаемся. Значит, все города будут посещены дважды. И количество ребер равно 1+2+\ldots+50+50 \cdot 49 / 2=2500.