Задача 044

Докажите, что у двудольного графа с четным числом вершин и четным числом ребер количество остовных деревьев четно. (Остовное дерево — это подграф исходного графа, содержащий все его вершины и являющийся деревом.)

Подсказка

Всего из дерева получается нечётное число графов, в которых добавлено ещё одно ребро.

Решение

Пусть G — наш граф, \mathrm{T}(G) — множество всех остовных деревьев графа G, а М( G ) — множество всех остовных подграфов графа G, имеющих ровно один цикл. Рассмотрим произвольное дерево T \subset \mathrm{~T}(G). В нем нечетное число ребер, следовательно, количество не вошедших в T ребер графа G также нечетно. Если к дереву T \subset \mathrm{~T}(G) добавить любое не вошедшее в него ребро графа G, то получится граф из \mathrm{M}(G). Всего таким образом из дерева T получается нечетное число графов из \mathrm{M}(G). Наоборот, рассмотрим любой граф H \subset \mathrm{M}(G) и его единственный цикл Z. Граф H может быть получен добавлением ребра к тем деревьям, которые получаются из H удалением одного из ребер цикла Z. Так как граф G двудольный, то в цикле Z — четное число ребер, следовательно, у графа H — четное число остовных деревьев-«»предков»». Отсюда следует, что в множестве \mathrm{T}(G) четное число остовных деревьев.