Задача 037

Каждые два города страны Гельбии соединены односторонним авиарейсом. Региональные бароны превратили страну в федерацию двух республик с общей столицей (каждый город, кроме столицы, принадлежит ровно одной из республик, а столица — обеим). Министерство путей сообщения посчитало количество N маршрутов, проходящих по каждому городу всей страны по одному разу (не возвращающихся в исходный город), а также аналогичные количества N_{1} и N_{2} для каждой из республик. Докажите, что N \geq N_{1} N_{2}.

Подсказка

Пусть есть два пути в ориентированном полном графе. Попытайтесь объединить их так, чтобы вершины каждого пути сохранили свой изначальный порядок.

Решение

Построим ориентированный граф, вершины которого соответствуют городам, а рёбра — дорогам. Пусть вершина w соответствует столице, A и B — графы, соответствующие республикам. Сначала сформулируем несложную лемму.

Пусть P и Q — два непересекащихся пути в полном ориентированном графе Т. Тогда существует путь R на вершинах этих двух путей, в котором все вершины пути P следуют в порядке пути P, а все вершины пути Q следуют в порядке пути Q. Этот факт нетрудно доказать индукцией по длине пути Q, вставляя по очереди его вершины в путь P. Отметим, что лемма верна и для случая, когда один из путей P и Q или они оба — пустые (из 0 вершин). Назовём путь R из леммы склейкой путей P и Q.

Рассмотрим любые гамильтоновы пути P графа A и Q графа B. Эти пути, очевидно, имеют вид P=P_{1} w P_{2} и Q=Q_{1} w Q_{2} (возможно, какие-то из участков P_{1}, P_{2}, Q_{1} и Q_{2} — пустые). По лемме существует путь R_{1} — склейка P_{1} и Q_{1} и путь R_{2} — склейка P_{2} и Q_{2}. Отметим, что если путь R_{1} непустой, то он кончается либо последней вершиной пути P_{1}, либо последней вершиной пути Q_{1}, то есть, из последней вершины пути R_{1} выходит ребро в w. Аналогично, либо путь R_{2} — пустой, либо из w выходит стрелка в первую вершину пути R_{2}. Тогда R=R_{1} w R_{2} — гамильтонов путь в графе T, в котором вершины подграфа A следуют в порядке пути P, а вершины подграфа B следуют в порядке пути Q. Каждой паре гамильтоновых путей ( P, Q ) очевидно, соответствует свой путь R.