Задача 032

На недавней математической олимпиаде командам-участницам были предложены девять задач. В итоге получилось, что каждая команда решила ровно три задачи, каждые две команды решили разные наборы задач и для любых трех команд можно найти задачу, которую не решила ни одна из них. Какое наибольшее количество команд могло участвовать в этой олимпиаде?

Подсказка

Назовём две непересекающиеся тройки задач запрещённой парой, если задачи, не входящие ни в одну из этих двух троек, образуют выбранную тройку.

Решение

Ответ: 56.

Решение: Пример на 56 команд получаем, выбрав 8 задач и рассмотрев все 56 составленных из них троек: они удовлетворяют всем условиям задачи. Допустим, мы выбрали больше 56 троек задач. Назовём две непересекающиеся тройки задач запрещённой парой, если задачи, не входящие ни в одну из этих двух троек, образуют выбранную тройку. Понятно, что хотя бы одна из двух троек, образующих запрещённую пару, не должна быть выбранной. Поскольку из шести задач можно выбрать три C_{6}^{3}=20 способами, каждая выбранная тройка порождает 10 запрещённых пар, причём, очевидно, разные тройки порождают разные запрещённые пары. При этом для каждой тройки задач существует 20 не пересекающихся с ней, то есть каждая тройка входит не больше, чем в 20 запрещённых пар. Если мы выбрали хотя бы 57 троек, у нас не меньше 570 запрещённых пар, в которые входит не менее 570 / 20>28 различных троек задач. Но из 9 задач можно образовать лишь C_{9}^{3}=84 тройки, поэтому невыбранными останутся максимум 27 троек. Значит, какие-то две выбранные задачи образуют запрещённую тройку. Противоречие.