Задача 031

В чемпионате по волейболу участвовало n>2 команд, каждые две из которых сыграли друг с другом ровно один раз. Оказалось, что для каждых двух команд есть ровно t команд, у которых они обе выиграли. Докажите, что n=4 t+3.

Подсказка

Возьмем любую команду A. Пусть она выиграла у k команд. Тогда каждая из этих k команд выиграла ровно у t из этих k команд — иначе нарушится условие задачи относительно нее и команды A.

Решение

Возьмем любую команду A. Пусть она выиграла у k команд. Тогда каждая из этих k команд выиграла ровно у t из этих k команд — иначе нарушится условие задачи относительно нее и команды A. Общее число матчей в микротурнире между данными k командами равно k(k-1) / 2 с одной стороны и общему числу побед, равному t k — с другой, откуда k=2 t+1. Осталось заметить, что в всем турнире было сыграно n(n-1) / 2 матчей и одержано n(2 t+1) побед. Значит, n(n-1) / 2=n(2 t+1), откуда n=4 t+3.