Задача 027

В кружке занимаются 2 n человек. Кружок называется однородным, если у каждого кружковца одно и то же количество друзей в кружке. Докажите, что кружок однороден тогда и только тогда, когда при любом его разбиении на две команды по n учеников количества пар друзей в командах равны.

Подсказка

Разделите вершины на две равные группы A и B.

Решение

Рассмотрим граф знакомств. Разделим вершины на две равные группы A и B. Пусть S_{A}\left(S_{B}\right) — сумма степеней вершин, входящих в A(B), а R — количество знакомств между учениками из A и B. Тогда количество знакомств N_{A} внутри A равно \left(S_{A}-R\right) / 2. 1) Пусть у всех одинаковое число друзей. Тогда при разбиении на равные группы A и B, S_{A}=S_{B}, следовательно, N_{A}=N_{B}. 2) Пусть не у всех одинаковое число друзей. Составим A из n вершин с наименьшими степенями. Тогда S_{A}<S_{B}, и, следовательно, N_{A}<N_{B}.