Задача 022

Пусть A — количество способов, которыми можно разбить множество натуральных чисел от 1 до n на непустые подмножества. Пусть B — количество способов разбить множество натуральных чисел от 1 до n+1 на непустые подмножества так, чтобы соседние числа были в разных подмножествах. Разбиения, отличающиеся только порядком подмножеств, считаются одинаковыми. Докажите, что A=B.

Подсказка

Для каждого разбиения чисел от 1 до n занумеруем составляющие его подмножества в порядке, в котором идут их наименьшие числа. Построим дерево с вершинами, помеченными числами от 1 до n, маршруты из корня которого в его висячие вершины будут находиться во взаимнооднозначном соответствии с разбиениями чисел от 1 до n на непустые подмножества. Корень занумеруем цифрой 1 : единица всегда в первом подмножестве. Двойка может лежать либо в подмножестве 1 , либо в подмножестве 2 , поэтому на следующем ярусе расположим соответствующие этим двум случаям вершины, помеченные цифрами 1 и 2 . Что можно сделать после этого?

Решение

Для каждого разбиения чисел от 1 до n занумеруем составляющие его подмножества в порядке, в котором идут их наименьшие числа. Построим дерево с вершинами, помеченными числами от 1 до n, маршруты из корня которого в его висячие вершины будут находиться во взаимнооднозначном соответствии с разбиениями чисел от 1 до n на непустые подмножества. Корень занумеруем цифрой 1 : единица всегда в первом подмножестве. Двойка может лежать либо в подмножестве 1 , либо в подмножестве 2 , поэтому на следующем ярусе расположим соответствующие этим двум случаям вершины, помеченные цифрами 1 и 2 . Далее дерево строится по индукции: если уже построены k ярусов, то с каждой вершиной C k-го яруса связано m+1 вершин ( k+1 )-го яруса, помеченных числами от 1 до m+1, где m — наибольшее число на маршруте из C в корень дерева.

Теперь построим аналогичное дерево для разбиений чисел от 1 до n+1, где соседние числа находятся в разных подмножествах. Из его корня, помеченного единицей, ведет ребро в единственную вершину второго яруса, помеченную двойкой, а из неё — в две вершины третьего яруса, помеченные единицей и тройкой (двойка невозможна, поскольку тогда числа 2 и 3 попадут в одно подмножество). Далее дерево строится по индукции: если уже построены k ярусов, то с каждой вершиной C k-го яруса связано m вершин ( k+1 )-го яруса, помеченных числами от 1 до m+1, исключая число, которым помечена вершина C, где m — наибольшее число на маршруте из C в корень дерева.

Осталось заметить, что если у второго дерева удалить единственное ребро, ведущее из корня во второй ярус, то в новом корне (бывшей единственной вершине второго яруса) у него окажется двойка, и потому получившийся обрубок второго дерева изоморфен первому дереву (доказывается индукцией по ярусам совместно с утверждением, что максимальное число на пути из вершины в корень во втором дереве на 1 больше максимального числа на соответствующем пути в первом дереве).