Задача 084

Ребра полного графа с n вершинами покрашены в несколько цветов таким образом, что каждый цвет встречается не более n-2 раз. Докажите, что есть три вершины, все ребра между которыми покрашены в различные цвета.

Подсказка

Предположим противное, пусть в любом треугольнике есть два одноцветных ребра. Рассмотрим вершину, из которой выходит наибольшее количество ребер одного цвета (или любую из них, если таких несколько). Пусть это вершина A, и она соединена ребрами цвета 1 с вершинами B_{1}, \ldots B_{k}. Поскольку k \leq n-1, то остались еще вершины C_{k+1}, \ldots C_{n-1}, каждая из которых соединена с вершиной A ребром какого-то другого цвета.

Решение

Решение 1. Предположим противное, пусть в любом треугольнике есть два одноцветных ребра. Рассмотрим вершину, из которой выходит наибольшее количество ребер одного цвета (или любую из них, если таких несколько). Пусть это вершина A, и она соединена ребрами цвета 1 с вершинами B_{1}, \ldots B_{k}. Поскольку k \leq n-1, то остались еще вершины C_{k+1}, \ldots C_{n-1}, каждая из которых соединена с вершиной A ребром какого-то другого цвета. Рассмотрим вершину C_{i}, пусть она соединена с A ребром цвета i. Тогда C_{i} должна быть соединена с каждой из вершин B_{1}, \ldots B_{k} либо ребром цвета 1 , либо ребром цвета i (иначе будет треугольник с разноцветными сторонами). Если все эти k ребер окрашены в цвет i, то всего из вершины C_{i} выходит k+1 ребро цвета i, что противоречит выбору вершины A и цвета 1 . Следовательно, хотя бы одно из этих ребер окрашено в цвет 1. Таким образом, из каждой вершины C_{k+1}, \ldots C_{n-1} выходит хотя бы одно ребро цвета 1 , и всего мы имеем n-1 ребро цвета 1 , что противоречит условию. Следовательно, обязательно найдутся три вершины, все три ребра между которыми покрашены в разные цвета.

Решение 2. Пусть в любом треугольнике есть два одноцветных ребра. Так как ребер любого цвета не более n-2, то они образуют несвязный граф на данных нам n вершинах. Для каждого цвета такой граф распадается хотя бы на две компоненты связности. Среди всех таких компонент связности (для всех цветов) найдем наибольшую по количеству вершин компоненты связности F (пусть ее ребра окрашены в цвет 1). Очевидно, существует вершина A, не вошедшая в F. Рассмотрим любую вершину B_{1} из F, она соединена с B ребром не цвета 1 , пусть это ребро цвета 2 . Если вершина B_{2} из F соединена с B_{1} ребром цвета 1 , то A также соединена с B ребром цвета 2 (иначе будет треугольник A B_{1} B_{2} будет иметь разноцветными ребрами). Такими же рассуждениями мы получим, что A соединена со всеми вершинами компоненты связности F ребрами цвета 2 , но тогда существует компонента связности цвета 2 , содержащая все вершины из F и вершину A. Противоречие с максимальностью компоненты связности F.