Задача 047

Вершины графа разбиты на три множества A, B, C так, что вершины из A не связаны рёбрами с вершинами из C. Известно, что A \cup B можно правильно раскрасить в k цветов, а B \cup C — в n цветов. В какое минимальное количество цветов можно с гарантией правильно раскрасить все вершины этого графа?

Подсказка

Покажите, что в k+n-1 цвет правильно раскрасить все вершины можно всегда.

Решение

Ответ. В k+n-1 цвет.

Решение: Покажем, что в k+n-1 цвет правильно раскрасить все вершины можно всегда. Раскрасим B \cup C в n цветов, назовём один из этих цветов первым, и пусть D — совокупность всех вершин из B, покрашенных в первый цвет. Теперь раскрасим A \cup D в k цветов, использовав в качестве одного из них первый цвет (а остальные k-1 цветов взяв отличными от уже использованных n цветов). У вершин, не входящих в A \cup D, сохраним прежнюю раскраску. Поскольку никакие вершины из A \cup D не связаны рёбрами с вершинами из C, покрашенными в первый цвет (из D — в силу правильности раскраски B \cup C в n цветов, из A — по условию), получится правильная раскраска графа в k+n-1 цвет.

Теперь покажем, что меньшего числа цветов может и не хватить. Расположим k n точек в виде прямоугольника из n строк и k столбцов. Примем это множество за B. Снизу добавим нулевую строку из k точек, примем ее за A, слева нулевой столбец, примем его за C. Ребрами в B соединим любые две точки, не лежащие ни в одной строке, ни в одном столбце. В A соединим рёбрами каждые две точки, в C — тоже. Кроме того, соединим рёбрами каждую точку из A со всеми точками из B, не лежащими с ней в одном столбце, и каждую точку из C со всеми точками из B, не лежащими с ней в одной строке. Очевидны правильные раскраски A \cup B в k цветов (по столбцам) и C \cup B в n цветов (по строкам). Покажем, что полученный граф нельзя раскрасить меньше, чем в k+n-1 цвет. Допустим, есть правильная раскраска A \cup B \cup C в k+n-2 цвета. Поскольку точки множества A раскрашены в k различных цветов, а точки множества C — в n различных цветов, то есть m \geq 2 цветов (назовём их общими), в которые покрашены точки обоих этих множеств. Отметим строки и столбцы, в которых находятся такие точки; на их пересечении находится m^{2} точек множества B. Заметим, что в каждый из m общих цветов может быть покрашено не больше одной из этих m^{2} точек, а именно, точка, стоящая на пересечении соответствующих столбца и строки. Стало быть, среди этих m^{2} точек есть m^{2}-m точек, раскрашенных в другие цвета. Это не могут быть общие цвета, но не могут быть и другие цвета, использованные при раскраске точек множеств A и C, потому что со всеми точками таких цветов точки из отмеченных строк и столбцов связаны рёбрами. Всего при раскраске точек из A и C было использовано k+n-m цветов. Из упомянутых выше m^{2}-m точек можно выбрать m точек, никакие две из которых не лежат в одной строке или одном столбце. Каждые две из этих m точек связаны ребром, поэтому они раскрашены не менее, чем в m цветов. Получается, что всего использовано не менее, чем k+n цветов. Противоречие.